Answer:
<h2>the answer of sols brother is correct</h2><h3>hope it helps you have a good day</h3><h2 />
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes
Answer:
Using the above algorithm matches one pair of Ghostbuster and Ghost. On each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are the same, so use the algorithm recursively on each side of the line to find pairings. The worst case is when, after each iteration, one side of the line contains no Ghostbusters or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P(
)- time algorithm.
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
Answer: This is done by heating a large volume of quartz sand to temperatures as high as 1800˚C. The result is pure, isolated silicon, which is allowed to cool and then ground into a fine powder. To make silicone, this fine silicon powder is combined with methyl chloride and heated once again.
Explanation: