There are 6.33 × 10²⁵ hydrogen atoms in this solution in total.
<h3>Explanation</h3>
- There are two hydrogen atoms in each water
molecule. - There are three hydrogen atoms in each ammonia
molecule.
2.10 × 10²⁵ water molecules and 7.10 × 10²⁴ ammonia molecules will contain
hydrogen atoms in total.
Answer: Inversely , Directly
Explanation:
The energy of a photon is inversely proportional to its wavelength and directly proportional to its frequency.
As can be seen from this equation;
E = hv = h c / ∧
Where E = Energy of a photon
v = Frequency
h = Planck Constant
c = speed of light
∧ = Wave length
Answer:
ΔH = 57.04 Kj/mole H₂O
Explanation:
60ml(0.300M Ba(OH)₂(aq) + 60ml(0.600M HCl(aq)
=> 0.06(0.3)mole Ba(OH)₂(aq) + 0.60(0.6)mole HCl(aq)
=> 0.018mole Ba(OH)₂(aq) + 0.036mole HCl(aq)
=> 100% conversion of reactants => 0.018mole BaCl₂(aq) + 0.036mole H₂O(l) + Heat
ΔH = mcΔT/moles H₂O <==> Heat Transfer / mole H₂O
=(120g)(4.0184j/g°C)(27.74°C - 23.65°C)/(0.036mole H₂O)
ΔH = 57,042 j/mole H₂O = 57.04 Kj/mole H₂O
Answer:
one reason is, Water is a very good liquid for cooling things down, for one thing there is plenty of it and it has also got a high specific heat capacity. This means that it can absorb a large amount of heat energy without getting too hot.
will not heat up or cool down very fast
Water has a high value of latent heat of vapourization so it has cooling properties.
hope this helps you. :)
Explanation:
Answer:
The law of multiple proportions is the third postulate of Dalton's atomic theory. It states that the masses of one element which combine with a fixed mass of the second element are in a ratio of whole numbers.
Therefore, the masses of oxygen in the two compounds that combine with a fixed mass of carbon should be in a whole number ratio. In 100 grams of the first compound (100 is chosen to make calculations easier), there are 57.1 grams oxygen and 42.9 grams carbon. The mass of oxygen (O) per gram of carbon (C) is:
57.1 g O / 42.9 g C = 1.33 g O per g C
In the 100 grams of the second compound, there are 72.7 grams of oxygen (O) and 27.3 grams of carbon (C). The mass of oxygen per gram of carbon is:
72.7 g O / 27.3 g C = 2.66 g O per g C
Dividing the mass O per g C of the second (larger value) compound:
2.66 / 1.33 = 2
This means that the masses of oxygen that combine with carbon are in a 2:1 ratio. The whole-number ratio is consistent with the law of multiple proportions.
Explanation: