Answer:
Potassium permanganate has a molar mass of 158.04 g/mol. This figure is obtained by adding the individual molar masses of <em><u>four oxygen atoms</u></em>, <em><u>one manganese atom</u></em> and <em><u>one potassium atom</u></em>
Explanation:
Answer:
It should be 1. 1.2 X 10^24
Explanation:
Answer:
MgCl2 + 2AgNO3 → 2AgCl + Mg(NO3)2
Explanation:
I'm assuming you want to balance it so...
The first thing I see is that there are two chlorines on the reactant side and one on the product side
Adding a coefficient of 2 would get 2AgCl2
Now there are two silvers on the reactant side, so add a 2 to AgNO3 on the products side. Now they are all balanced.
If that is not what you are looking for let me know!
Answer: Option (c) is the correct answer.
Explanation:
When a weak acid reacts with a strong base then it results into the formation of a basic solution. Hence, the resulting solution will always have a pH greater than 7.
Since, at the equivalence point number of hydrogen ions become equal to the hydroxide ions. Therefore, pH of solution will be about 7.
So at the equivalence point, the weak acid will get neutralized due to the addition of strong base. Therefore, it will lead to the formation of conjugate base.
As a result, the solution will become slightly basic in nature.
Thus, we can conclude that at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly acidic solution because at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly basic solution.
Max Planck concluded that energy is not continuous and is carried in discontinuous units which he named quanta.