The answer is (3). The powdered iron and the piece iron is the same substance and is just different in the shape. So the reason is the power has larger surface area for reaction occurs.
Answer:
A hydrogen bonding is a bond class that is produced from the attraction existing in a hydrogen atom and an oxygen, fluorine or nitrogen atom with a negative charge. This attraction, meanwhile, is known as dipole-dipole interaction and links the positive pole of one molecule with the negative pole of another.
Explanation:
The hydrogen atom, which has a positive charge, is known as the donor atom, while the oxygen, fluorine, chlorine or nitrogen atom is the bond acceptor atom. In the substance in which they are most effective is in the water.
Hydrogen bonds have only one third of the strength of covalent bonds, but they have important effects on the properties of the substances in which they occur, especially in terms of melting and boiling points in crystal structures.
Explanation:
The main gases dissolved in purified water are oxygen and nitrogen, carbon dioxide, plus traces of inert gases, all in equilibrium with ambient air.
<u>Answer:</u> The above reaction is non-spontaneous.
<u>Explanation:</u>
For the given chemical reaction:

Here, nickel is getting reduced because it is gaining electrons and iron is getting oxidized because it is loosing electrons.
We know that:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Relationship between standard Gibbs free energy and standard electrode potential follows:

As, the standard electrode potential of the cell is coming out to be negative for the above cell. Thus, the standard Gibbs free energy change of the reaction will become positive making the reaction non-spontaneous.
Hence, the above reaction is non-spontaneous.
Answer:
of water at 30C and 1 atm is 256.834 J/mol·K.
Explanation:
To solve the question, we note the Maxwell relation such as

Where:
= Specific heat of gas at constant pressure = 75.3 J/mol·K
= Specific heat of gas at constant volume = Required
T = Temperature = 30 °C = 303.15 K
α = Linear expansion coefficient = 3.04 × 10⁻⁴ K⁻¹
K = Volume comprehensibility = 4.52 × 10⁻⁵ atm⁻¹
Therefore,
75.3 -
= 
=
- 75.3 = 256.834 J/mol·K.