<span>Work: W = Fd. 50(distance) multiplied by 90(force) would equal 4500 J or, answer D</span>
Answer:
- quality factor (Q) = 69.99
- inductor = 1.591 x 10⁻⁴ H
- capacitor = 3.248 x 10⁻¹⁰ F
Explanation:
Given;
resonance frequency (F₀) = 700 kHz
resistor, R = 10 Ohm
bandwidth (BW) = 10 kHz
bandwidth (BW) 

make L (inductor) the subject of the formula


make C (capacitor) the subject of the formula

quality factor (Q) 
quality factor (Q) = 69.99
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
Given: A cubic tank holds 1,000.0 kg of water.
Mass of water in tank (m) = 1000.0 kg
Density of water (d) = 1000.0 kg /m³
Concept: Volume(V) = Mass / Density
Since the tank holds these water in it so the volume of water will be equal to the volume of the tank.
Hence, the volume of the tank = Mass of water / Density of water
or, = 1000.0 kg / 1000.0 kg m⁻³
or, = 1.0 m³
Since tank is cubical in shape. Let its side be 'x'
The volume of tank (x³) = 1.0 m³
or. side of tank (x) = 1.0 m
Hence, the dimensions of the tank will be 1.0 m.
Answer:

Explanation:
Let:

We need to know for which value of
the function
is equal to
:

Therefore, we need to solve for the previous equation for
:
Replacing the values of
and
:

Subtract 4 from both sides:

Multiply both sides by -1

Divide both sides by 3:

Therefore the value of
for which
is
.
Verify the result:
