Answer:
O2 is limiting reactant
Explanation:
To find the limiting reactant we need to convert the mass of each reactant to the moles using the formula weight. And, as 1 mole of C6H12O6 reacts with 6 moles of O2, we can know wich reactant will be over first (Limiting reactant) as follows:
<em>Moles C6H12O6:</em>
650g * (1mol/180.16g) = 3.608 moles C6H12O6
<em>Moles O2:</em>
650g * (1mol/32g) = 20.31 moles O2
Now, for a complete reaction of 3.608 moles of C6H12O6 are required:
3.608 moles C6H12O6 * (6mol O2 / 1mol C6H12O6) = 21.65 moles O2
As there are just 20.31 moles of O2,
<h3>O2 is limiting reactant</h3>
Answer:
V₂ = 2509.62 cm³
Explanation:
Given data:
Initial volume = 1500 cm³
Initial temperature = -65°C (-65 + 273 = 208 K)
Final temperature = 75°C ( 75 +273 = 348 K)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1500 cm³ × 348 K / 208 k
V₂ = 522000 cm³.K / 208 k
V₂ = 2509.62 cm³
A calorimeter contains reactants and a substance to absorb the heat absorbed. The initial temperature (before the reaction) of the heat absorbent is measured and then the final temperature (after the reaction) is also measured. The absorbent's specific heat capacity and mass are also known. Given all of this data, the equation:
Q = mcΔT
To find the heat released.