1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
2 years ago
8

When a star begins to run out of fuel, what two types of stars can it become

Physics
1 answer:
Nikolay [14]2 years ago
7 0

Answer:

A red giant or red super giant then a white dwarf

Explanation:

This also depends on what the star classification was to begin with.

You might be interested in
A bicyclist notes that the pedal sprocket has a radius of rp = 9.5 cm while the wheel sprocket has a radius of rw = 4.5 cm. The
ANTONII [103]

Answer:

Explanation:

a) ωp = 2π radians / 1.7 s = <u>3.7 rad/s</u>

b) ωs = 3.7 rad/s(9.5 cm / 4.5 cm) = 7.8 rad/s

  v = (ωs)R = 7.8(65) = 507 cm/s or <u>5.1 m/s</u>

c) ωs = 3.5 m/s / 0.65 m = 5.38 rad/s

ωp = 5.38(4.5 cm / 9.5 cm) = 2.55 rad/s

t = θ/ω = 2π / 2.55 = 2.463... <u>2.5 s</u>

4 0
3 years ago
10. What is momentum of the water bottle before the collision? (read the
Alona [7]

Answer:

O ksm/s

Explanation:

before collision,

Velocity =0

So,momentum of the bottle before collision=mass ×velocity

=mass×0

=0 kgm/s

8 0
2 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
Where do the electrons that form the auroras enter the magnetosphere? a. Through holes c. At the equator b. Between the magnetic
marta [7]
I think the answer is d. In the magnetotail. I hope this helps! :)
7 0
3 years ago
Read 2 more answers
Substances X and Y are both nonpolar. If the volatility of X is higher than that of Y, what is the best explanation?
lesya692 [45]
I believe the correct answer from the choices listed above is the last option.  If the volatility of X is higher than that of Y, then  <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also,  the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • What did Thomson’s model of the atom include that Dalton’s model did not have? A)a nucleus
    13·1 answer
  • Why does a coastal area have less variation in temperature than a noncoastal area
    12·1 answer
  • Ocean waves are hitting a beach at a rate of 3.5 hz. what is the period of the waves?
    7·1 answer
  • A student of mass 65.4 kg, starting at rest, slides down a slide 21.2 m long, tilted at an angle of 20.1° with respect to the ho
    12·1 answer
  • A 0.37-kg object connected to a light spring with a force constant of 23.2 N/m oscillates on a frictionless horizontal surface.
    8·1 answer
  • A motorcycle rider travelling at 30m/s sees a child run into the streets 190m ahead. If the rider takes 1 second to react before
    5·1 answer
  • With the aid of a string, a gyroscope is accelerated from rest to 16 rad/s in 0.40 s. what is its angular acceleration in rad/s2
    13·1 answer
  • If a driver is tired, the thinking distance will be less. True or false.why?
    14·1 answer
  • in the absences of friction, gravity, and all other external forces, what kind of speed will an object display if it’s travel fr
    14·1 answer
  • Soccer can be traced back to the early Greeks and Romans.<br> O True<br> O False
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!