The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
Scientific would be the word to fill in the blank
Answer:
The answer to your question is n = 5, l = 2, m can be -2, -1, 0, 1 or 2
Explanation:
Data
orbital = 5d
values of n, l, m
Process
1.- Determine the value of n
n is the coefficient of the orbital, in this problem n = 5
2.- Determine the value of l
l takes values depending in the sublevel of energy,
if the sublevel is s then l = 0
p l = 1
d l = 2
f l = 3
For this problem l = 2
3.- Determine the value of m
when l = 2, m takes values of -2, - 1, 0, 1 or 2
Explanation:
This is because gas particles are free to move as they are not held in place by strong molecular forces while particles in a solid are
Answer:
T₂ = 392 K
Explanation:
Given that,
Initial volume of the hot air balloon, V₁ = 55500 m³
Initial temperature, T₁ = 21°C = 294 K
Final volume, V₂ = 74000 m³
We need to find the final temperature inside the balloon. The relation between the temperature and volume is given by charles law i.e.

Where
T₂ is the final temperature
So,

So, the new temperature is 392 K.