Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843
Answer:
changing the direction in which a force is exerted
Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where, is the mass of the ball, is the speed and is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,
and,
Thus, m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution = = = 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
The gravitational force between two objects is given by
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
In this problem,
,
and
, therefore the gravitational force between the two objects is
Active transform faults are between two tectonic<span> structures or faults.</span>