To determine the heat required in order to decompose a certain amount of a substance, we need information on the heat needed to decompose one mole of the substance. This value are readily available online and other sources. For this reaction, the heat needed is 129 kJ per 2 mol of NaHCO3. We calculate as follows:
129 KJ / 2 mol NaHCO3 (1 mol / 84.01 g ) (25.5 g NaHCO3 ) = 19.58 kJ of heat is needed.
Complete Question
The complete question is shown on the first uploaded image
Answer:
10a The interest payment on the bond is = $ 8,204
10b The debit to cash for the bond proceeds is = $ 302,000
Explanation:
The explanation is shown on the second uploaded image
<u>Answer:</u>
The correct answer option is B) 2.0 M.
<u>Explanation:</u>
We are given the number of grams of NaOH (Sodium Chloride) which are dissolved in 750 milliliters of water and we are to find its molarity.
We know the formula of molarity:
<em>Molarity = (mass * 1000) / (volume * molecular mass) </em>
Volume = 750 ml = 750 cm
Molecular mass = 40
Mass = 60 grams
Substituting these values in the above formula:
Molarity = = 2.0 M
Answer:
all 4 of the middle ones are part of the nucleus
Answer:
The final product of the reaction is (<em>2S,3S</em>)-2-ethoxy-3-methylpentane.
Explanation:
The given reaction undergoes mechanism in which the nucleophile attacks the backside and it is substituted by the elimination of bromine.
Due to the backside attack of nucleophile , the inverse in stereo-chemistry is observed.
After the substitution of ethoxy group, the configuration is assigned according to the priority it shows clock wise direction(R) - configuration.
When hydrogen faces the front side , it results shows inverse configuration i.e, S- configuration.
The chemical reaction is as follows.