The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
Answer:
The following are some ways of safely disposing of non-biodegradable waste.
1. Take them to a local recycling facility. Separate metal, plastic, glass, and other non-biodegradable waste and store them ready for recycling.
2. Combustion and energy recovery.
3. Disposal at sanitary facilities.
4. Reduce.
5. Landfills.
Explanation: Hope it helps! ^_^"
(G00gle)