Answer is: 13181,7 kJ of energy <span>is released when 10.5 moles of acetylene is burned.
</span>Balanced chemical reaction: C₂H₂ + 5/2O₂ → 2CO₂ + H₂O.
<span>ΔHrxn = sum of
ΔHf (products of reaction) - sum of ΔHf (reactants).</span><span>
Or ΔHrxn = ∑ΔHf (products of reaction)
- ∑ΔHf (reactants).
ΔHrxn - enthalpy change of chemical reaction.
<span>ΔHf - enthalpy of formation of reactants or
products.
</span></span>ΔHrxn = (2·(-393,5) + (-241,8)) - 226,6 · kJ/mol.
ΔHrxn = -1255,4 kJ/mol.
Make proportion: 1 mol (C₂H₂) : -1255,4 kJ = 10,5 mol(C₂H₂) : Q.
Q = 13181,7 kJ.
Data:
n (number of mols) = ?
V (volume) = 2.50 Liters
If:
1 L → 1000 g
2.50 L → y
y = 1000*2.50 = 2500 g
Therefore:
m (mass) = 2500 g
Now:
Molar Mass (MM) of oxygen = 16 g/mol
Formula:

Solving:


Answer:
Exam 3 Material
Homework Page Without Visible Answers
This page has all of the required homework for the material covered in the third exam of the first semester of General Chemistry. The textbook associated with this homework is CHEMISTRY The Central Science by Brown, LeMay, et.al. The last edition I required students to buy was the 12th edition (CHEMISTRY The Central Science, 12th ed. by Brown, LeMay, Bursten, Murphy and Woodward), but any edition of this text will do for this course.
Note: You are expected to go to the end of chapter problems in your textbook, find similar questions, and work out those problems as well. This is just the required list of problems for quiz purposes. You should also study the Exercises within the chapters. The exercises are worked out examples of the questions at the back of the chapter. The study guide also has worked out examples.
These are bare-bones questions. The textbook questions will have additional information that may be useful and that connects the problems to real life applications, many of them in biology.
Explanation:
Answer: Flammability is a material's ability to burn in the presence of oxygen.
Explanation: Chemical properties can be observed only when the substance changes into one or more different substances through chemical reactions or transformations. One of the chemical properties is flammability.
Flammability is a material's ability to burn in the presence of oxygen.
Remember, oxygen doesn't burn. Precisely flammable substances obtain substances that burn. Oxygen remains an oxidizing agent, which means it supports the combustion process. Oxygen causes other objects to catch fire at low temperatures and burns hotter and faster. But oxygen itself does not burn. Consequently, if you at present deliver fuel and fire, adding oxygen will provide the fire.
Carbon dioxide is the result of combustion. An example can be seen in firewood in a fireplace. One of the chemical properties of carbon-based wood is having the ability to burn. Chemically the wood turns into carbon dioxide when it burns and leaves a residue of ash. Furthermore, this ash residue cannot be turned back into the wood. Chemical changes result in new substances.
Consider an example of a combustion reaction to methane gas:
Our balanced equation for methane combustion implies that every one CH₄ molecule reacts with two O₂ molecules. The product of combustion is one carbon dioxide molecule and two steam or water vapor molecules.