Answer:
The answer to your question is P2 = 84.16 kPa
Explanation:
Data
Volume 1 = V1 = 4.52 L Volume 2 = V2 = 4.83 l
Pressure 1 = P1 = 102 kPa Pressure 2 = P2 = ?
Temperature 1 = T1 = 23°C Temperature 2 = T2 = -12°C
Process
1.- Convert the temperature to °K
Temperature 1 = 23 + 273 = 296°K
Temperature 2 = -12 + 273 = 261°K
2.- Use the Combined Gas law to solve this problem
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
-Substitution
P2 = (102)(4.52)(261) / (296)(4.83)
-Simplification
P2 = 120331.44 / 1429.68
-Result
P2 = 84.16 kPa
Answer:
Explanation:
While trying to write the chemical formula for a compound (a neutral molecule), one must identify and exchange the charge of the cation with that of the anion to become the subscript of one other. For example
Aluminium oxide has Aluminium (Al) and oxygen (O); since Al has a charge of 3+ (the cation) and O has a charge of 2- (the anion), the compound would have it's charges as Al³⁺O²⁻ and when the charges are exchanged to there subscripts, it would form Al₂O₃; thus there would be two cations of aluminium for every three anions of oxygen in order to have a neutral molecule.
This same explanation can be given to Aluminium sulfite. Aluminium sulfite has Aluminium (Al) and sulfite (SO₃). Al has a charge of 3+ (cation) while sulfite has a charge of 2- (anion), with the compound having it's charges as Al³⁺(SO₃)²⁻ and when the charges are exchanged to there subscripts, it would form Al₂(SO₃)₃ and would thus have 2 cations of aluminium (Al³⁺) for every 3 anions of sulfite (SO₃³⁻) in order to have a neutral molecule.
Salt allows the ice cream to get colder because
1) Calculate the molar weight. 12.000 + 4*(35.45)
2) Divide 15.0 by the molar weight to get moles
3) Multiply by Avogado's number of get the number of molecules.