First convert the kg to g ----- 0.03kg = 30g
Then divide the mass by the volume ----- 30g ÷ 25mL = 1.2
The density is 1.2g/mL<span />
Answer:
The answer to your question is 80.3%
Explanation:
Data
Percent by mass of F
molecules NF₃
Process
1.- Calculate the molar mass of nitrogen trifluoride
molar mass = (1 x 14) + (19 x 3)
= 14 + 57
= 71 g
2.- Use proportions and cross multiplications to find the percent by mass of F. The molar mass of NF₃ is equal to 100%.
71 g of NF₃ ------------------ 100%
57 g of F ------------------- x
x = (57 x 100)/71
x = 5700 / 71
x = 80.3%
3.- Conclusion
Fluorine is 80.3% by mass of the molecule NF₃
To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s
Answer:
1.2×10² mmole of Na₂S₂O₃
Explanation:
From the question given above, the following data were obtained:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity is simply defined as the mole of solute per unit litre of water. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the number of mole of Na₂S₂O₃ in the solution as illustrated below:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity = mole /Volume
0.2 = Mole of Na₂S₂O₃ / 0.6
Cross multiply
Mole of Na₂S₂O₃ = 0.2 × 0.6
Mole of Na₂S₂O₃ = 0.12 mole
Finally, we shall convert 0.12 mole to millimole (mmol). This can be obtained as follow:
1 mole = 1000 mmol
Therefore,
0.12 mole = 0.12 mole × 1000 mmol / 1 mole
0.12 mole = 120 = 1.2×10² mmole
Thus, the chemist added 1.2×10² mmole of Na₂S₂O₃
Answer:
moon, planet, sun, solar system, galaxy, Universe
Explanation:
I am not fully sure but I think this is right
but I apologize if it is wrong