This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
The answer is B. Suspension. Suspension mixtures are composed of two or more materials mixed together wherein the solute particles are usually larger than those found in a solution or colloid. In cases of solid-fluid suspension mixtures, the solid solute particles tend to settle at the bottom of the mixture after some time.
Step 1 - Discovering the ionic formula of Chromium (III) Carbonate
Chromium (III) Carbonate is formed by the ionic bonding between Chromium (III) (Cr(3+)) and Carbonate (CO3(2-)):

Step 2 - Finding the molar mass of the substance
To find the molar mass, we need to multiply the molar mass of each element by the number of times it appears in the formula of the substance and, finally, sum it all up.
The molar masses are 12 g/mol for C; 16 g/mol for O and 52 g/mol for Cr. We have thus:

The molar mass will be thus:

Step 3 - Finding the percent composition of carbon
As we saw in the previous step, the molar mass of Cr2(CO3)3 is 284 g/mol. From this molar mass, 36 g/mol come from C. We can set the following proportion:

The percent composition of Carbon is thus 12.7 %.
Answer:
it is 90 km in one hour it is 90km/h
90/60=1,5
<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.