Answer:
A) True
Explanation:
Yes this is true when length is creases the heat transfer coefficient decease with length.
The heat transfer(h) coefficient is varying with x by given expression
For Laminar flow

For turbulent flow

But when flow is in transitional state the heat heat transfer(h) coefficient is increases with x.But for laminar as well as turbulent flow h is decrease when x increases.
Answer:
¿Qué aplicación estás usando? podría ser porque te equivocaste un paso
Because the red mustang is at the stop sign first. It’s a 4 way intersection
Answer:
A) i) 984.32 sec
ii) 272.497° C
B) It has an advantage
C) attached below
Explanation:
Given data :
P = 2700 Kg/m^3
c = 950 J/kg*k
k = 240 W/m*K
Temp at which gas enters the storage unit = 300° C
Ti ( initial temp of sphere ) = 25°C
convection heat transfer coefficient ( h ) = 75 W/m^2*k
<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
First step determine the Biot Number
characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125
Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3
Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method
attached below is a detailed solution of the given problem
<u>B) The physical properties are copper</u>
Pcu = 8900kg/m^3)
Cp.cu = 380 J/kg.k
It has an advantage over Aluminum
C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
Given that:
P = 2200 Kg/m^3
c = 840 J/kg*k
k = 1.4 W/m*K