Answer:
Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.
Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.
AC Signal = An electrical signal that alternates between positive and negative voltage.
DC Signal = An electrical signal that only has positive voltage.
Rectify = A fancy word for converting something.
Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.
The load resistor is just there to prevent a short circuit from happening.