Answer:
a)6.8 KPa
b)0.264 gallon
c)47.84 Pa.s
Explanation:
We know that
1 lbf= 4.48 N
1 ft =0.30 m
a)
Given that
P= 1 psi
psi is called pound force per square inch.
We know that 1 psi = 6.8 KPa.
b)
Given that
Volume = 1 liter
We know that 1000 liter = 1 cubic meter.
1 liter =0.264 gallon.
c)

Answer:
What is one of the “don’ts” in drawing dimension lines? they should never be labeled they should never be stacked they should never cross each other they should never have only one measurement value
Answer:
A) i) 984.32 sec
ii) 272.497° C
B) It has an advantage
C) attached below
Explanation:
Given data :
P = 2700 Kg/m^3
c = 950 J/kg*k
k = 240 W/m*K
Temp at which gas enters the storage unit = 300° C
Ti ( initial temp of sphere ) = 25°C
convection heat transfer coefficient ( h ) = 75 W/m^2*k
<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
First step determine the Biot Number
characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125
Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3
Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method
attached below is a detailed solution of the given problem
<u>B) The physical properties are copper</u>
Pcu = 8900kg/m^3)
Cp.cu = 380 J/kg.k
It has an advantage over Aluminum
C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
Given that:
P = 2200 Kg/m^3
c = 840 J/kg*k
k = 1.4 W/m*K
Answer:
The level of the service is loss and the density is 34.2248 pc/mi/ln
Explanation:
the solution is attached in the Word file