For 7A(17) :
Electronic configuration 
So, there are 5 unpaired electrons present in group 7A(17).
<h3>
What are Unpaired Electrons?</h3>
- An unpaired electron is an electron that doesn't form part of an electron pair when it occupies an atom's orbital in chemistry.
- Each of an atom's three atomic orbitals, designated by the quantum numbers n, l, and m, has the capacity to hold a pair of two electrons with opposing spins.
- Unpaired electrons are extremely uncommon in chemistry because an object carrying an unpaired electron is typically quite reactive. This is because the production of electron pairs, whether in the form of a chemical bond or as a lone pair, is frequently energetically advantageous.
- They play a crucial role in describing reaction pathways even though they normally only appear momentarily during a reaction on a thing called a radical in organic chemistry.
To learn more about unpaired electrons with the given link
brainly.com/question/14356000
#SPJ4
Answer:
CH2O
Explanation:
Firstly, we need to convert the masses of the elements to percentage compositions. This can be done by placing the mass of each element over the total mass multiplied by 100% . We can start with carbon.
C = 5.692/14.229 * 100 = 40%
O = 7.582/14.229 * 100 = 53.29%
H = 0.955/14.229 * 100 = 6.71%
We then proceed to divide each percentage composition by their atomic mass of 12, 16 and 1 respectively.
C = 40/12 = 3.333
O = 53.29/16 = 3.33
H = 6.71/2 = 6.71
Dividing by the smaller value which is 3.33
C = 3.33/3.33 = 1
O = 3.33/3.33= 1
H = 6.71/3.33 = 2
The empirical formula of the compound ribose is CH2O
Answer:
3.4
Explanation:
The pH scale is used to express the acidity or basicity of a solution.
- If the pH < 7, the solution is acid.
- If the pH = 7, the solution is neutral.
- If the pH > 7, the solution is basic.
Given the hydronium ion concentration [H₃O⁺] = 3.8 × 10⁻⁴ M, we can calculate the pH using the following expression.
pH = -log [H₃O⁺]
pH = -log 3.8 × 10⁻⁴
pH = 3.4
This solution is acid.
Answer:
Point A
Explanation:
The Northern Hemisphere is furthest away from the sun in position A. Therefore the sunlight takes longer to reach the Earth which results in the Northern Hemisphere experiencing winter.