Answer: Option B: 1.3×10⁵ W
Explanation:


Work Done, 
Where s is displacement in the direction of force and F is force.

where, v is the velocity.
It is given that, F = 5.75 × 10³N
v = 22 m/s
P = 5.75 × 10³N×22 m/s = 126.5 × 10³ W ≈1.3×10⁵W
Thus, the correct option is B
Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back
Answer:
As beams of particles and their associated energy are given off, the pulsar will lose energy slowly, which will decrease the rate of its rotation. The frequency of pulses would therefore decrease, so that fewer pulses are observed in a given time span. The strength of the pulse signal will also decrease so the pulses will become fainter. Eventually, the pulsar should rotate so slowly and have such a low emission of radiation that it would no longer be observable.
Atoms of the same element having equal numbers of protons, but different numbers of neutrons is called isotope.
Vector 1 has components


and vector 2 has


Add these vectors to get the resultant, which has components


The magnitude of the resultant is

with direction
such that

or about 50º N of E.