Answer:
B. the light will reach the front of the rocket at the same instant that it reaches the back of the rocket.
Explanation:
To an observer at rest in the rocket who can't see either sides of the rocket, the speed of the light is constant which means the distance to the front or the back is same and would appear to reach the rocket at the same time.
Although from the point of view of the person on the earth, the front of the rocket is travelling in opposite direction of the light while the back of the rocket is moving closer to the light. This means that the distance travelled by the light going forward will be longer going backwards. And since the speed of light is constant in both directions, the light will reach the back of the rocket before it reaches the front for the observer on the earth.
(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
F has direct relation with a
then doubling F cause acc. to get double i:e 6×2=12
Answer:
W = 0
Explanation:
We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.
The work done by an object is given by :
F = ma
So,
m is mass
a is acceleration
d is displacement
The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.