The answer is <span>a. kinetochore.
A kinetochore is a protein structure that holds the </span><span>sister chromatids to the spindle fibers. It is the place on chromatids where the spindle fibers bind during the cell division. As the result, sister chromatids are pulled apart to the opposite ends of the cell.</span>
Density=mass/volume
Mass = 0.0500g
Volume = 6.40mL
0.0500g/6.40mL = 0.0078g/mL
Answer:
Cp = 0.093 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 300 J
m = mass = 267 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 12 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 300 J / (267 g × 12 °C)
Cp = 0.093 J.g⁻¹.°C⁻¹
Answer:
Uh first of all this is algebra but I'll answer this
First distribute the three and 5 (Multiply them by both terms inside parenthesis.
3x-6=5x+20
Then add like terms
8x=14
Divide 8 by 8 and 8 by 14
x = 14/8
Explanation:
Explanation:
Starting moles of ethanol acid = 0.020 mol
At the equilibrium 50 % of the ethanol acid molecules reacted
∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %
= 0.010 mol
Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol
Moles of the product
gas formed are calculated as
0.010 mol CH3COOH * 1 mol
/ 2 mol CH3COOH
= 0.005 mol 
Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol 
That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol
Now Calculate the pressure :
0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas
P1/n1 = P2/n2
P2 = P1*n2 / n1
= 0.74 atm * 0.015 mol / 0.020 mol
= 0.555 atm