The bulk of the world's deserts are located at 30 degrees north latitude and 30 degrees south latitude, when the warm equatorial air begins to descend. The heavy, warm, descending air vaporises large amounts of water from the ground's surface. As a result, the environment is rather dry.
<h3>Why are the majority of the desert regions on Earth located between 20 and 30 degrees latitude?</h3>
The zones of falling air are those between 20 and 30 latitudes on the western borders of continents (high pressure and dry weather). As a result, the moisture continues to decrease as the air is compressed and warmed as it falls.
Where the scorching equatorial air starts to descend, the majority of the world's deserts are found between 30 degrees north and 30 degrees south latitude. Large volumes of water are vaporised off the surface of the ground by the thick, warming, falling air. As a result, the climate is extremely dry.
Learn more about latitude refer
brainly.com/question/1939015
#SPJ4
Yes, C is correct. It self explains itself as we know light travels through a vacuum ( doesn't need a medium) and light is a type of electromagnetic wave.
A body of mass m has weight
F = GMm/r²
on the surface of the Earth, where G is the universal gravitational constant, M is the mass of the Earth, and r is it's radius.
If the weight is to be halved, then we have
1/2 F = 1/2 GMm/r² = (1/√2)² GMm/r² = GMm/(√2 r²)
so the distance between the body and the planet's center needs to be
√2 × 6.4 × 10⁶ m ≈ 9.1 × 10⁶ m
Answer:1) the total distance is the sum of the two distances
60 km + 45 km = 105 km
2) The displacement is the net movement, or the difference between the initial position and the final position
Call x the initial position, then the final position is x + [60km - 45km]
And the displacement is x + (60km - 45km) - x =60km -45 km = 15 km
Explanation: