Answer:
The total surface are of the bowl is given by: 0.0532*pi m² (approximately 0.166533 m²)
Explanation:
The total surface area of the semi-spherical bowl can be decomposed in three different sections: 1) an outer semi-sphere of radius 12 cm, 2) an inner semi-sphere of radius 10 cm, and 3) the edge, which is a 2-dimensional ring with internal radius of 10 cm and external radius of 12 cm. We will compute the areas independently and then sum them all.
a) Outer semi-sphere:
A1 = 2*pi*r² = 2*pi*(12 cm)² = 288*pi cm² = 904.78 cm²
b) Inner semi-sphere:
A2 = 2*pi*(10 cm)² = 200*pi cm² = 628.32 cm²
c) Edge (Ring):
A3 = pi*(r1² - r2²) = pi*((12 cm)²-(10 cm)²) = pi*(144-100) cm² = 44*pi cm² = 138.23 cm²
Therefore, the total surface area of the bowl is given by:
A = A1 + A2 + A3 = 288*pi cm² + 200*pi cm² + 44*pi cm² = 532*pi cm² (approximately 1665.33 cm²)
Changing units to m², as required in the problem, we get:
A = 532*pi cm² * (1 m² / 10, 000 cm²) = 0.0532*pi m² (approximately 0.166533 m²)
Recessive genotype I hope this helps
Inductive reactance (Z) = ω L = 2Πf L = (2Π) (12,000) (L)
I = V / Z
4 A = 16v / (24,000Π L)
Multiply each side by (24,000 Π L):
96,000 Π L = 16v
Divide each side by (96,000 Π) :
L = 16 / 96,000Π = 5.305 x 10⁻⁵ Henry
L = 53.05 microHenry
To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 