The pressure of water is 7.3851 kPa
<u>Explanation:</u>
Given data,
V = 150×

m = 1 Kg
= 2 MPa
= 40°C
The waters specific volume is calculated:
= V/m
Here, the waters specific volume at initial condition is
, the containers volume is V, waters mass is m.
= 150×
/1
= 0.15
/ Kg
The temperature from super heated water tables used in interpolation method between the lower and upper limit for the specific volume corresponds 0.15
/ Kg and 0.13
/ Kg.
= 350+(400-350) 
= 395.17°C
Hence, the initial temperature is 395.17°C.
The volume is constant in the rigid container.
=
= 0.15
/ Kg
In saturated water labels for
= 40°C.
= 0.001008
/ Kg
= 19.515
/ Kg
The final state is two phase region
<
<
.
In saturated water labels for
= 40°C.
=
= 7.3851 kPa
= 7.3851 kPa
Answer:
The curve length (<em>L</em>) will be = 1218 ft
The elevations and stations for PVC and PVI
a. station of PVC = 103 + 91.00
b. station of PVI = 116 + 09.00
c. elevation of PVC = 432.18ft
d. elevation of PVI = 426.09ft
Explanation:
First calculate for the length (<em>L</em>)
To calculate the length, use the formula of "elevation at any point".
where, elevation at any point = 424.5.
and ∴ PVC Elevation = (420 + 0.01L)
Then, calculate for Station of PVC and PVI and elevation of PVC and PVI
Answer:
hello the figure attached to your question is missing attached below is the missing diagram
answer :
i) 1.347 kW
ii) 1.6192 kW
Explanation:
Attached below is the detailed solution to the problem above
First step : Calculate for Enthalpy
h1 - hf = -3909.9 kJ/kg ( For saturated liquid nitrogen at 600 kPa )
h2- hg = -222.5 kJ/kg ( For saturated vapor nitrogen at 600 kPa )
second step : Calculate the rate of heat transfer in boiler
Q1-2 = m( h2 - h1 ) = 0.008( -222.5 -(-390.9) = 1.347 kW
step 3 : find the enthalpy of superheated Nitrogen at 600 Kpa and 280 K
from the super heated Nitrogen table
h3 = -20.1 kJ/kg
step 4 : calculate the rate of heat transfer in the super heater
Q2-3 = m ( h3 - h2 )
= 0.008 ( -20.1 -(-222.5 ) = 1.6192 kW