H2(g) +C2H4(g)→C2H6(g)
H-H +H2C =CH2→H3C-Ch3
2C -H bonds and one C-C bond are formed while enthalpy change (dH) of the reaction,
H-H: 432kJ/mol
C=C: 614kJ/mol
C-C: 413 kJ/mol
C-C: 347 kJ/mol
dH is equal to sum of the energies released during the formation of new bonds or negative sign, and sum of energies required to break old bonds or positive sign.
The bond which breaks energy is positive.
432+614 =1046kJ/mol
Formation of bond energy is negative
2(413) + 347 = 1173 kJ/mol
dH reaction is -1173 + 1046 =-127kJ/mol
Answer:I think it could be A or B but I would choose A.
Explanation:
C a giraffe that eats the leaves off trees
Answer: 90.04°C
Explanation: <u>Calorimeter</u> is a device measures the amount of heat of a chemical or physical process. An ideal calorimeter is one that is well-insulated, i.e., prevent the transfer of heat between the calorimeter and its surroundings. So, the net heat change inside the calorimeter is zero:

Rearraging, it can be written as

showing that the heat gained by Substance 1 is equal to the energy lost by Substance 2.
In our case, water is gaining heat, because its temperature has risen and so, brass is losing energy:

Calculating:
![m_{w}.c_{w}.\Delta T=-[m_{b}.c_{b}.\Delta T]](https://tex.z-dn.net/?f=m_%7Bw%7D.c_%7Bw%7D.%5CDelta%20T%3D-%5Bm_%7Bb%7D.c_%7Bb%7D.%5CDelta%20T%5D)
![100.4.18.(18.4-15)=-[52.9.0.375.(18.4-T)]](https://tex.z-dn.net/?f=100.4.18.%2818.4-15%29%3D-%5B52.9.0.375.%2818.4-T%29%5D)
Note: final temperature is the same as the substances are in thermal equilibrium.
Solving:
418(3.4)= - 365.01 + 19.8375T
19.8375T = 1786.21
T = 90.04
The initial temperature for the sample of brass was 90.04°.
Completely natural process with almost no harmful side effects