Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
Answer:
2649600 Joules
Explanation:
Efficiency = 40%
m = Mass of air = 92000 kg
v = Velocity of wind = 12 m/s
Kinetic energy is given by

The kinetic energy of the wind is 6624000 Joules
The wind turbine extracts 40% of the kinetic energy of the wind

The energy extracted by the turbine every second is 2649600 Joules
Answer:
Answer:
5.2307 %
Explanation:
(acutal mass- estimated mass) / ( estimated mass)
As you coast down a long hill on your bicycle, potential energy from your height is converted to kinetic energy as you and your bike are pulled downward by gravity along the slope of the hill. While there is air resistance and friction slowing you down by a little bit, your speed increases gradually until you apply the brakes, causing enough friction to slow yourself and the bike to a stop at the bottom.
A roller coaster will have higher kinetic energy at the lower hill because it will have already been moving as opposed to the initial hill. But I'm not one hundred percent certain. You can always google this stuff, but I do know for sure that at the first hill, the roller coaster will have higher potential energy.
Hope this helps!