The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.
First law of motion<span>- sometimes referred to as the </span>law<span> of inertia. An object at rest stays at rest and an object in </span>motion<span> stays in </span>motion<span> with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
The magnitude of the current in wire 3 is (I₃)= 0.33A
<h3>How to calculate the value of the magnitude of the current in wire 3 ?</h3>
To calculate the magnitude of the current in wire 3 we are using the Kirchhoff’s current law,
I₁ + I₂ + I₃ = 0
Where we are given,
I₁ = current in wire 1
=0.40 A.
I₂ = current in wire 2
= -0.73 A.
We have to calculate the magnitude of the current in wire 3, I₃
Now we put the known values in above equation, we get,
I₁ + I₂ + I₃ = 0
Or, I₃ = -.(I₁ + I₂)
Or, I₃ = -.(0.40 - 0.73)
Or, I₃ = 0.33 A
From the above calculation, we can conclude that the current in wire 3 is I₃ = 0.33 A
Learn more about current:
brainly.com/question/25537936
#SPJ4