Carter needs a power equal to 63 W to be able to push the bag full of Jersey. This is by using the formula: Power is equal to the product of Force applied and Displacement all over time traveled.
So you subtract the numbers that are on the same axis. So if your gravitational force is 10 and your normal force is 5 you do 5-10 to get -5 since gravity acts downward
Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
Answer:
695800 N/m^2 or Pa
Explanation:
Height of the water from the ground H = 71 m
Acceleration due to gravity g =9.8 m/s^2
density of water ρ= 1000 kg/m^3
The minimum output gauge pressure to make water reach height H
P= ρgH
= 1000×9.8×71= 695800 N/m^2 or Pa
Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.