1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
3 years ago
14

A roller coaster glides from rest from the top of an 80.0 meter hill. What is the speed of the roller coaster at the bottom of t

he hill?
Physics
1 answer:
shepuryov [24]3 years ago
4 0
So this is the case of energy conversion. From potential to kinetic.
As energy is conserve:
Epi+Eki=Epf+Ekf ; i for initial and f for final. At begining object at rest hence Eki=0 while at final, object on the lowest position, hence epf=0 therefore:
Epi=Ekf
M.g.h=1/2.m.v^2
Assume no mass change during the process, then
G.h=1/2.v^2
Hence v at bottom:
v=sqrt(2×g×h) assume g=10m/s^2
=sqrt(2×10×80)=sqrt(1600)=40m/s
Hence velocity in the bottom is 40 m/s

You might be interested in
Use the mass and density data to calculate the volume of corn syrup to the nearest tenth.
Nataly [62]
41.5 is the answer that i got. hope this helps!

4 0
3 years ago
Read 2 more answers
The diagram illustrates the movement of sound waves between an observer and a race car. As the race car drives away from the obs
Andrei [34K]
I believe the answer is d
6 0
3 years ago
A double-slit experiment is set up using red light (λ = 706 nm). A first order bright fringe is seen at a given location on a sc
Elanso [62]

Answer:

λ = 470.66 nm

Explanation:

for bright fringey_m = \frac{m\lambda D}{d}

D= distance between slit and screen

d= distance between the slits

for first order bright fringe m = 1,

        y_1 = \frac{1\lambda D}{d}

         y_1 = {706*D}{d}

for dark fringe,we have

y_m = {(m + 1/2)\lambda D}{d}    

Now to get the dark fringes at the same location we should have;

(706)D/d = (m + 1/2)λD/d    

put m = 1

(1 + 1/2)λ = (706)

λ = 470.66 nm

6 0
3 years ago
The average period of pendulum clock is found to be 1.2s at sea level. The period of the same pendulum on a mountain top is foun
Kipish [7]

Answer:

g' = 10.12m/s^2

Explanation:

In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.

You use the following formula:

T=2\pi \sqrt{\frac{l}{g}}         (1)

l: length of the pendulum = ?

g: acceleration due to gravity at sea level = 9.79m/s^2

T: period of the pendulum at sea level = 1.2s

You solve for l in the equation (1):

l=\frac{gT^2}{4\pi^2}\\\\l=\frac{(9.79m/s^2)(1.2s)^2}{4\pi^2}=0.35m

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

T'=2\pi \sqrt{\frac{l}{g'}}\\\\g'=\frac{4\pi^2l}{T'^2}

g': acceleration due to gravity at the top of the mountain

T': new period of the pendulum

g'=\frac{4\pi^2(0.35m)}{(1.18s)^2}=10.12\frac{m}{s^2}

The acceleration due to gravity at the top of the mountain is 10.12m/s^2

5 0
3 years ago
While accelerating at a constant rate from 12.0 m/s to 18.0 m/s, a car moves over a distance of 60.0 m. how much time does it ta
Yuri [45]

While accelerating at a constant rate from 12.0 m/s to 18.0 m/s, a car moves over a distance of 60.0 m. The time taken by the car will be 4 seconds. the correct answer is option(c).

When acceleration is constant, the rate of change in velocity is also constant. In the absence of any acceleration, velocity remains constant. When acceleration is positive, velocity becomes more significant.

Let a denote acceleration, u denote initial velocity, v denote final velocity, and t denote time.

The equation of motion is stated as,

v = u + at

v² = u² + 2as

A car travels across a distance of 60.0 m while accelerating constantly from 12.0 m/s to 18.0 m/s.

Then the time taken by the car will be,

u = 12 m/s

v = 18 m/s

s = 60 m

Put these in the equation v² = u² + 2as.

18² = 12² + 2 x a x 60

a = 1.5

Then the time will be

18 = 12 + 1.5t

1.5t = 6

t = 4 seconds

Hence, the time taken is 4 s.

The complete question is:

While accelerating at a constant rate from 12.0 m/s to 18.0 m/s, a car moves over a distance of 60.0 m. How much time does it take?

1.00 s

2.50 s

4.00 s

4.50 s

To know more about acceleration refer to:  brainly.com/question/12550364

#SPJ4

8 0
1 year ago
Other questions:
  • Magma is classified as basaltic and andesitic or rhyolitic based on my factor
    7·1 answer
  • I’m not sure how to do 30, could someone pls help?
    8·1 answer
  • HELP, what are 2 chemical properties of Tungsten.
    15·2 answers
  • What could you do to change the volume of a gas
    9·1 answer
  • The thermal energy in a hot iron flows into a shirt. what can possibly be said about this situation
    14·2 answers
  • Suppose a ball with mass M hangs vertically from a spring with stiffness k and relaxed length L0. At what length Leq will the ba
    12·1 answer
  • When trying to simplify and find the equivalent resistance you should first simplify resistors in _ before simplifying those in
    10·1 answer
  • A mass of 0.34 kg is fixed to the end of a 1.4 m long string that is fixed at the other end. Initially at rest, he mass is made
    8·1 answer
  • Aluminium has a work function of 4. 08 ev. (a) find the cutoff wavelength and cutoff frequency for the photoelectric effect?
    9·1 answer
  • (i) What happens to the magnitude of the charge on each plate of a capacitor if the potential difference between the conductors
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!