Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb