The sentence can be completed as follows:
The wavelength of an electromagnetic waves is the spatial distance between two successive troughs.
Note that the wavelength of a wave can also measured as the spatial distance between two successive crests of the wave. Also note that the second part of the sentence ("also known as the period") is not true, because period is another thing (in fact, the period is the time interval between two successive troughs).
Answer:
The number of molecules displaced in a vibration makes the amplitude of a sound.
The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
No because there must be an even # if their is an even amount one of the forces isn’t being cancelled
Answer:
1.843 x 10^-5 C
Explanation:
<u><em>Givens:
</em></u>
It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.
Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation
E = (Q/A)/∈o (1)
Where,
Q: total charge on the disk.
A: the area of the disk.
<u><em>Calculations: </em></u>
We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold
Q = EA∈o
= (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)
= 1.843 x 10^-5 C
note:
calculations maybe wrong but method is correct