Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
Explanation:
1. Phases of Venus: Galileo was the first astronomer to use a telescope to observe the celestial objects. Through a telescope he observed that Venus shows the phases just like the Moon. This proved the Heliocentric theory correct against the then prevalent Geocentric theory.
2. Law of Falling bodies: The acceleration due to gravity is independent of weight of the objects that means two bodies of different mass will hit the ground at the same time if dropped from the same height.
3. The uneven surface of the Moon: He observed that the surface of the Moon is uneven and rough.
4. Discovery of the 4 Moons of Jupiter
I think is ocean but I'm not sure
Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph.
Answer:
Only the perpendicular component of gravity is responsible for the rotation because wind points toward the pivot.
Explanation: