Answer:
Elements having same valence electrons are placed in <u>same group.</u>
Explanation:
First, let's start with some basic concepts of modern periodic table:
1. Modern Periodic table : It is the arrangement of element in the increasing order of their atomic numbers
The Modern periodic table is divided into Periods and groups .
Periods : These are the horizontal rows. There are seven periods in the periodic table . Period 1 has 2 element. Period two and three has 8 elements , period 4 and 5 have 18 elements and the period 6 and 7 have 32 elements.
Same period have same number of atomic orbital(Shell)
Group : The group is the vertical columns . There are 18 groups in the modern periodic table.Those element which have same group number will also have same number of electron in their outermost shell. The number of electron in the outermost shell determines the valency of the element.
So, elements showing same valency are placed in same group.
All alkali are place in group 1 and have 1 valance electron in the outermost shell
Explanation:
Are there any values given in the question?
Answer:
The equilibrium will be shifted to lift with the formation of a brown gelatinous precipitate of Fe(OH)₃.
Explanation:
- Le Chatelier's principle states that <em>"when any system at equilibrium for is subjected to change in concentration, temperature, volume, or pressure, then the system readjusts itself to counteract the effect of the applied change and a new equilibrium is established that is different from the old equilibrium"</em>.
- The addition of NaOH will result in the formation of Fe(OH)₃ precipitate which has a brown gelatinous precipitate.
- The formation of this precipitate cause removal and decrease of Fe³⁺ ions.
- According to Le Chatelier's principle, the system will be shifted to lift to increase Fe³⁺ concentration and reduce the stress of Fe³⁺ removal and readjust the equilibrium again. So, the [Fe(SCN)²⁺] decreases.
- Increasing [Fe³⁺] will produce a yellow color solution that contains a brown gelatinous precipitate of Fe(OH)₃.
Assuming you meant cation and not action, gallium would most likely form a cation because it is a group A element