Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
The speed of molecules increases when temperature is increased as it will result in more number of collisions between the molecules. Thus, there will be increase in kinetic energy of molecules and increase in the speed of solvent molecules.
Whereas on decreasing the temperature, the kinetic energy of molecules will decrease. This will result in less number of collisions between the molecules. Therefore, the speed of solvent molecules will slow down.
A pure substance<span> has a definite and constant composition. A pure substance can be either an element or a compound, but the composition of a pure substance doesn’t vary.</span> Ex: salt or sugar<span>
</span>Mixtures are physical combinations of pure substances that have no definite or constant composition — the composition of a mixture varies according to who prepares the mixture. Ex: sand mixed with salt
The boiling point of oxygen is higher than nitrogen's boiling
The reason the boiling point of O2 is higher is not because of increased van der Waals interactions, but simple physics. The mass of a molecule of O2 is greater than that of a molecule of N2, so the molecule of O2 traveling at a speed sufficient to break out of the liquid phase has a greater kinetic energy than an analogous N2 molecule.
The net effect is that more energy must be distributed throughout a sample of O2 to achieve a given vapor pressure (in this case equal to atmospheric pressure) than for a sample of N2. More energy means greater temperature.