Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
Answer : The pressure of the helium gas is, 1269.2 mmHg
Explanation :
To calculate the pressure of the gas we are using ideal gas equation:
where,
P = Pressure of gas = ?
V = Volume of gas = 210. mL = 0.210 L (1 L = 1000 mL)
n = number of moles = 0.0130 mole
R = Gas constant =
T = Temperature of gas =
Putting values in above equation, we get:
Conversion used : (1 atm = 760 mmHg)
Thus, the pressure of the helium gas is, 1269.2 mmHg
Answer:
This question is incomplete.
Explanation:
This question is incomplete because of the absence of given mass and volume, however, the steps below will help solve the completed question. The molarity (M) of a solution is the number of moles of solute per liter of solvent. The formula is illustrated below;
Molarity = number of moles (n) / volume (in liter or dm³)
To calculate the number of moles of NaC₂H₃O₂, we say
number of moles (n) =
given or measured mass of NaC₂H₃O₂ ÷ molar mass of NaC₂H₃O₂
The volume of the solvent must be in liter (same as dm³). Thus, to convert mL to liter, we divide by 1000
The unit for Molarity is M (Molar concentration), mol/L or mol/dm³
Answer:
Ethane would have a higher boiling point.
Explanation:
In this case, for the lewis structures, we have to keep in mind that all atoms must have <u>8 electrons</u> (except hydrogen). Additionally, each carbon would have <u>4 valence electrons</u>, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.
Now, the main difference between methane and ethane is an <u>additional carbon</u>. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have <u>more area of interaction</u> for ethane. If we have more area of interaction we have to give <u>more energy</u> to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.
I hope it helps!
Answer:
In pair NaF and H2O both compounds exibit predominantly ionic bonding.