A "FORCE" is required to cause acceleration or cause an object to move.
Stoichiomety:
1 moles of C + 1 mol of O2 = 1 mol of CO2
multiply each # of moles times the atomic molar mass of the compund to find the relation is weights
Atomic or molar weights:
C: 12 g/mol
O2: 2 * 16 g/mol = 32 g/mol
CO2 = 12 g/mol + 2* 16 g/mol = 44 g/mol
Stoichiometry:
12 g of C react with 32 g of O2 to produce 44 g of CO2
Then 18 g of C will react with: 18 * 32/ 12 g of Oxygen = 48 g of Oxygen
And the result will be 12 g of C + 48 g of O2 = 60 g of CO2.
You cannot obtain 72 g of CO2 from 18 g of C.
May be they just pretended that you use the law of consrvation of mass and say that you need 72 g - 18g = 54 g. But it violates the proportion of C and O2 in the CO2 and is not possible.
Answer: a)
is the limiting reagent
b) 3.59 g
c) 11.6g
Explanation:
To calculate the moles :


According to stoichiometry :
a) 9 moles of
require= 4 moles of
Thus 0.15 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
b) As 9 moles of
give = 8 moles of 
Thus 0.15 moles of
give =
of 
Mass of 
c) As 9 moles of
give = 3 moles of 
Thus 0.15 moles of
give =
of 
Mass of 
Answer: 48,501 J/mol
Explanation:
1) Action barrier = activation energy = Ea
2) Data:
i) T₁ = 12°C = 12 + 273.15 K = 285.15K
ii) T₂ = 22°C = 22 + 273.15 K = 295.15 K
iii) rate constant = k: k₂ / k₁ = 2
iv) Ea = ?
3) Formula:
Arrhenius' law gives the relationship between the constant of reaction and the temperature:

4) Solution
By arranging the formula, you get:
㏑[k₂/k₁] =Ea/R [1/T₁ - 1/T₂]
Replace k₂ = 2k₁; T₁ = 285.15; and T₂ = 295.15
ln[2] = Ea/8.314 J/K mol × [1/285.15 - 1/295.15]K
Ea = ln [2] × 8.314 J/K mol / [1.18818×10⁻⁴K] = 48,501 J/mol