The force of the air resistance is 4 N.
The given parameters;
- mass of the flower pot, m = 2 kg
- weight of the flower pot, W = 20 N
Let the air resistance = F
Apply Newton's second law of motion to determine the force of the air resistance acting upward to oppose the motion of the pot falling downwards.

Thus, the force of the air resistance is 4 N.
Learn more here: brainly.com/question/19887955
Each electron holds 2(n2)
Answer:
Car has more power output than crane
Explanation:
We have given that mass of the crane m = 1000 kg
Height through which crane lift the steel beam h = 10 m
Acceleration due to gravity 
So work done by crane 
Time period is given as t = 5 sec
We know that power 
Now mass of the car = 1000 kg
Initial velocity u = 0 m /sec
Final velocity v = 10 m/sec
We know that work done is equal to the change in kinetic energy
So work done 

Time ids given as t = 2 sec
So power 
So car has more power output than crane
Answer:
Rug burn, Indian burn done to you by a friend, friction from the road causes your car to accelerate at a slower rate, The cylinder heads in an engine, When trying to move a heavy object across a rough surface
Explanation:
Answer:

Explanation:
<u>Horizontal Launch
</u>
It happens when an object is launched with an angle of zero respect to the horizontal reference. It's characteristics are:
- The horizontal speed is constant and equal to the initial speed

- The vertical speed is zero at launch time, but increases as the object starts to fall
- The height of the object gradually decreases until it hits the ground
- The horizontal distance where the object lands is called the range
We have the following formulas




Where
is the initial horizontal speed,
is the vertical speed, t is the time, g is the acceleration of gravity, x is the horizontal distance, and y is the height.
If we know the initial height of the object, we can compute the time it takes to hit the ground by using

Rearranging and solving for t



We then replace this value in

To get



The initial speed depends on the initial height y=32.5 m, the range x=107.6 m and g=9.8 m/s^2. Computing 

The launch velocity is
