Answer:
A) exothermic, δh is negative
B) endothermic, δh is positive
C) endothermic, δh is positive
Explanation:
And endothermic process absorbs heat from its sorrounding, cooling the sorrounding down. Whereas an exothermic process releases heat to its sorrounding raising the temperature of the sorrounding system.
Answer:
<em>b. Observe the radio waves coming from all dark matter; from the strength of the radio waves from each cluster, estimate the amount of dark matter needed to produce them.</em>
<em></em>
Explanation:
The universe is thought to be made up of 85% dark matters. <em>Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect. This means that option b is wrong since radio wave is an electromagnetic wave</em>. Dark matter is a form of matter that makes up about a quarter of the total mass–energy density of the universe. Dark matter was theorized due a variety of astrophysical observations and gravitational effects that cannot be explained by accepted theories of gravity unless there were more matter in the universe than can be seen.
Answer:
40000 N/m²
Explanation:
Applying,
P = F/A................... Equation 1
Where P = Pressure, F = Force, A = Area.
From the question,
The force(F) exerted by the person's foot is thesame as it's weight.
F = W = mg............ Equation 2
Where m = mass of the person, g = acceleration due to gravity.
Substitute equation 2 into equation 1
P = mg/A................ Equation 3
Given: m = 60 kg, g = 10 m/s², A = 150 cm² = (150/10000) m² = 0.015 m²
Substitute these values into equation 3
P = (60×10)/0.015
P = 600/0.015
P = 40000 N/m²