Answer:
NaCl>MgCl2> MgS>KBr
Explanation:
The smaller the cation, the higher the lattice energy of the compound
ENERGY WOULD BE RELALISED, MEANING BONDS ARE BEING BROKEN, SO IT IS AN EXOTHERMIC REACTION
Answer:
VH2SO4 = 145.3 mL
Explanation:
Mw BaO2 = 169.33 g/mol
⇒ mol BaO2 = 53.5g * ( mol BaO2 / 169.33 g BaO2) = 0.545 mol BaO2
⇒according to the reaction:
mol BaO2 = mol H2SO4 = 0.545 mol
⇒ V H2SO4 = 0.545 mol H2SO4 * ( L H2SO4 / 3.75 mol H2SO4 )
⇒V H2SO4 = 0.1453 L (145.3 mL)
Answer:
Products are favored.
Explanation:
The acid-base reaction of CH₃COOH (acid) with NH₃ (base) produce:
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = ?
It is possible to know Kr of the reaction by the sum of acidic dissociations of the half-reactions. That is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ Ka = 1.8x10⁻⁵
NH₃ + H⁺ ⇄ NH₄⁺ 1/Ka = 1/ 5.6x10⁻¹⁰ = 1.8x10⁹
___________________________________
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = 1.8x10⁻⁵×1.8x10⁹ = <em>3.2x10⁴</em>
<em> </em>
As Kr is defined as:
Kr = [CH₃COO⁻] [NH₄⁺] / [CH₃COOH] [NH₃]
And Kr is > 1
[CH₃COO⁻] [NH₄⁺] > [CH₃COOH] [NH₃],
showing <em>products are favored</em>.
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.