Answer:
Although chlorine itself usually does not cause environmental harm, it combines rapidly to form chemicals such as dioxins that pollute water, contaminate fish and transfer to humans and larger animals that eat the fish.
Explanation:
Answer:
answer is b
use pv=nRT
p directly proportional to moles(n)
p1/p2=n1/n2
p/p2=n/2n
p2=2p
Answer:
Ka = 
Explanation:
Initial concentration of weak acid =
pH = 6.87
![pH = -log[H^+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%2B%5D)
![[H^+]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D)
![[H^+]=10^{-6.87}=1.35 \times 10^{-7}\ M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-6.87%7D%3D1.35%20%5Ctimes%2010%5E%7B-7%7D%5C%20M)
HA dissociated as:

(0.00045 - x) x x
[HA] at equilibrium = (0.00045 - x) M
x = 
![Ka = \frac{[H^+][A^{-}]}{[HA]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)

0.000000135 <<< 0.00045

the answer is probably cuz I looked it up online listed properties
Answer:
0.24
Explanation:
We are given that
Rate constant for A=
Rate constant for B,k'=0.0750/s
We have to find the value of equilibrium constant for the reaction

Equilibrium constant, for k=
Using the formula

Hence, the value of the equilibrium constant for the reaction
at this temperature=0.24