Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps
<h3><u>
Full question:</u></h3>
Which statements describe the Mercalli scale? Check all that apply.
A. This scale measures seismic waves based on their size.
B. This scale rates an earthquake according to how much damage it causes.
C.This scale produces a single rating for earthquakes that reach the surface.
D. This scale uses Roman numerals to rank the damage caused by an earthquake.
E.This scale measures the magnitude of an earthquake based on the size of seismic waves.
<h3><u>
Answer:</u></h3>
The Mercalli scale : This scale rates an earthquake according to how much damage it causes and This scale uses Roman numerals to rank the damage caused by an earthquake.
<h3><u>
Explanation:</u></h3>
The Modified Mercalli scale is intended to illustrate the consequences of an earthquake, at a contracted station, on tangible characteristics, on modern fittings and human beings.
The Modified Mercalli Intensity value ascribed to a particular site subsequent an earthquake has an extra significant means of severity to the nonscientist than the magnitude because intensity assigns to the outcomes really encountered at that position. This scale is comprised of 12 growing levels of intensity, denoted by Roman numerals, arranging from gradual shaking to catastrophic impairment.
Answer:
The wavelengths of C1 is 10.4m, A6 is 0.193m and B7 is 0.0861m
Explanation:
Using the formula V = f×λ . Then substitute the following values into the formula:
a) v=340m/s
f=32.7 Hz
λ=V ÷ f
= 340 ÷ 32.7
= 10.4m (3s.f)
b) λ=340 ÷ 1760
= 0.193m (3s.f)
c) λ=340÷3951.1
= 0.0861m (3s.f)
(Correct me if I am wrong)
Answer:
Answer is D
Explanation:
By changing the direction of the current moving through the wire will change polarity of the magnet but it will not affect the strength of the magnet.
Answer:
a=-4.2 m/s²
Explanation:
The horse riding so inital velocity is given finally the rider stops so the final velocity is zero.
initial velocity =Vi= 21 m/s
final velocity =Vf= 0 m/s
distance covered = S=52 m
By using 2nd equation of motion we can find the acceleration
2aS=Vf² -Vi²
a=(-441)/104
a=-4.2 m/s²
So the accceleration is 4.2 m/s².