Answer:
894 electrons
Explanation:
The electrostatic force between the two charges is given by:

where we have
is the force
k is the Coulomb's constant
q1 = q2 =q is the magnitude of the charge on each sphere
r = 20.0 cm = 0.20 m is the distance between the two spheres
Substituting and solving for q, we find the charge on each sphere:

And since each electron has a charge of

the net charge on each sphere will be given by

where N is the number of excess electrons; solving for N,

Number of barrels are 3.0. Each barrel contains 42 gallons of oil. Thus, total volume of oil will be 42×3=126 gallons.
Converting gallons into m^{3}
1 gallon=0.00378 m^{3}
Thus, 126 gallons=0.4769 m^{3}
Thickness of oil film is 2.5\times 10^{2} nm, converting it into meters as follows:
1 nm=10^{-9} m
Thus,
2.5\times 10^{2} nm=1.5\times 10^{-7}m
Now, volume V of oil is related to area A and thickness T as follows:
V=A×T
rearranging,
A=\frac{V}{T}=\frac{0.4769 m^{3}}{2\times 10^{-7}m}=2.38\times 10^{6}m^{2}
Thus, square meters of oil will be 2.38\times 10^{6}m^{2}
Answer :
The magnet produces a domain alignment that allows the iron become magnetic such that it is attracted to the original magnet.the magnetic iron can then create the same effect on another piece of iron.
Explanation:
the piece of magnet is brought closer to the iron where the domains of the iron align including the magnetic poles.
Answer:
8.64 x 10^7 J
Explanation:
Intensity of sunlight, I = 1000 W/m^2
Length of panel, L = 6 m
Width of panel, W = 4 m
Area of the panel, A = L x W = 6 x 4 = 24 m^2
time, t = 1 hour = 3600 second
Energy = Intensity x area of panel x time
E = 1000 x 24 x 3600 = 8.64 x 10^7 J
Answer:
<h2>
<em>Distance</em></h2>
<em>The </em><em>length</em><em> </em><em>of </em><em>the </em><em>actual </em><em>path </em><em>travelled by </em><em>a </em><em>body </em><em>is </em><em>called </em><em>distance </em><em>travelled </em><em>by </em><em>a </em><em>body.It </em><em>is </em><em>a </em><em>scalar </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em>
<h2>
<em>Displacement</em></h2>
<em>The </em><em>shortest </em><em>distance</em><em> </em><em>from </em><em>initial </em><em>position</em><em> </em><em>to </em><em>the </em><em>final </em><em>position</em><em> </em><em>of </em><em>a </em><em>body </em><em>is </em><em>called </em><em>displacement</em><em> </em><em>of </em><em>the </em><em>body.It </em><em>is </em><em>a </em><em>vector</em><em> </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em><em>.</em>
<em>Please </em><em>see </em><em>the </em><em>attached </em><em>picture.</em><em>.</em><em>.</em>
<em>It </em><em>is </em><em>the </em><em>example </em><em>of </em><em>distance </em><em>and </em><em>displacement.</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>