Answer:
-0.7 m/sec
Explanation:
Mass of first block = m1 =3.0 kg
Mass of second block = m2= 5.0 kg
Velocity of first block = V1= 1.2 m/s
Velocity of second block = V2 = ?
Momentum of Center of mass MVcom is sum of both blocks momentum and is given by
MVcom= m1v1+m2v2
Where
M= mass of center of mass
Vcom= Velocity of center of mass=0 m/s (because center of mass is at rest , so Vcom = 0 m.sec)
Putting values, we get;
0= 3×1.2+5v2
==> v2= 3.6/5= - 0.7 m/s
-ve sign indicates that block 2 is moving in opposite direction of block 1
For a neutral atom number of electrons equals number of protons, in other for the net charge of the atom to be zero...
no. of electrons = 12
The Young modulus E is given by:

where
F is the force applied
A is the cross-sectional area perpendicular to the force applied

is the initial length of the object

is the increase (or decrease) in length of the object.
In our problem,

is the initial length of the column,

is the Young modulus. We can find the cross-sectional area by using the diameter of the column. In fact, its radius is:

and the cross-sectional area is

The force applied to the column is the weight of the load:

Now we have everything to calculate the compression of the column:

So, the column compresses by 1.83 millimeters.
The pressure of the air inside the balloon is higher than outside, and when you pop the balloon, the high pressure air expands quickly and makes a popping sound.