1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
14

The accompanying specific gravity values describe various wood types used in construction. 0.320.350.360.360.370.380.400.400.40

0.410.410.420.420.420.420.420.430.44 0.450.460.460.470.480.480.490.510.54 0.540.550.580.630.660.660.670.680.78 Construct a stem-and-leaf display using repeated stems. (Enter numbers from smallest to largest separated by spaces. Enter NONE for stems with no values.)
Engineering
1 answer:
marysya [2.9K]3 years ago
8 0

Answer:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \\ \\{0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \\ \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \\ \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \\  \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

Explanation:

Given

0.32,\ 0.35,\ 0.36,\ 0.36,\ 0.37,\ 0.38,\ 0.40,\ 0.40,\ 0.40,\ 0.41,

0.41,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.43,\ 0.44,\ 0.45,\ 0.46,

0.46,\ 0.47,\ 0.48,\ 0.48,\ 0.49,\ 0.51,\ 0.54,\ 0.54,\ 0.55,

0.58,\ 0.63,\ 0.66,\ 0.66,\ 0.67,\ 0.68,\ 0.78.

Required

Plot a steam and leaf display for the given data

Start by categorizing the data by their tenth values:

0.32,\ 0.35,\ 0.36,\ 0.36,\ 0.37,\ 0.38.

0.40,\ 0.40,\ 0.40,\ 0.41,\ 0.41,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.42,

0.43,\ 0.44,\ 0.45,\ 0.46,\ 0.46,\ 0.47,\ 0.48,\ 0.48,\ 0.49.

0.51,\ 0.54,\ 0.54,\ 0.55,\ 0.58.

0.63,\ 0.66,\ 0.66,\ 0.67,\ 0.68.

0.78.

The 0.3's is will be plotted as thus:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \ \end{array}

The 0.4's is as follows:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ {0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \ \end{array}

The 0.5's is as follows:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \ \end{array}

The 0.6's is as thus:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \ \end{array}

Lastly, the 0.7's is as thus:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

The combined steam and leaf plot is:

\begin{array}{ccc}{Steam} & {\vert} & {Leaf}  \ \\ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \\ \\{0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \\ \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \\ \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \\  \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

You might be interested in
The type of current that flows from the electrode across the arc to the work is called what?
Scrat [10]

Answer:

Direct current.

Explanation:

5 0
3 years ago
A computer has a two-level cache. Suppose that 60% of the memory references hit on the first level cache, 35% hit on the second
Andreyy89

Answer:

t=14ns

Explanation:

We make the relation between the specific access time and the memory percentage in each level, so

60\% \Rightarrow 60/100 = 0.60\\35\% \Rightarrow 35/100 = 0.35\\05\% \Rightarrow 05/100 = 0.05

t= 0.6(5) + 0.35(5+15) + 0.05(5+15+60)\\t= 0.6(5) + 0.35(20) + 0.05(80)\\t= 3 + 7 + 4\\t= 14 ns

Average Access Time is 14 nsec.

4 0
3 years ago
Air at 38°C and 97% relative humidity is to be cooled to 14°C and fed into a plant area at a rate of 510m3/min. (a) Calculate th
Katarina [22]

To develop the problem it is necessary to apply the concepts related to the ideal gas law, mass flow rate and total enthalpy.

The gas ideal law is given as,

PV=mRT

Where,

P = Pressure

V = Volume

m = mass

R = Gas Constant

T = Temperature

Our data are given by

T_1 = 38\°C

T_2 = 14\°C

\eta = 97\%

\dot{v} = 510m^3/kg

Note that the pressure to 38°C is 0.06626 bar

PART A) Using the ideal gas equation to calculate the mass flow,

PV = mRT

\dot{m} = \frac{PV}{RT}

\dot{m} = \frac{0.6626*10^{5}*510}{287*311}

\dot{m} = 37.85kg/min

Therfore the mass flow rate at which water condenses, then

\eta = \frac{\dot{m_v}}{\dot{m}}

Re-arrange to find \dot{m_v}

\dot{m_v} = \eta*\dot{m}

\dot{m_v} = 0.97*37.85

\dot{m_v} = 36.72 kg/min

PART B) Enthalpy is given by definition as,

H= H_a +H_v

Where,

H_a= Enthalpy of dry air

H_v= Enthalpy of water vapor

Replacing with our values we have that

H=m*0.0291(38-25)+2500m_v

H = 37.85*0.0291(38-25)-2500*36.72

H = 91814.318kJ/min

In the conversion system 1 ton is equal to 210kJ / min

H = 91814.318kJ/min(\frac{1ton}{210kJ/min})

H = 437.2tons

The cooling requeriment in tons of cooling is 437.2.

3 0
3 years ago
A turbine operates at steady state, and experiences a heat loss. 1.1 kg/s of water flows through the system. The inlet is mainta
strojnjashka [21]

Answer:

\dot W_{out} = 399.47\,kW

Explanation:

The turbine is modelled after the First Law of Thermodynamics:

-\dot Q_{out} -\dot W_{out} + \dot m\cdot (h_{in}-h_{out}) = 0

The work done by the turbine is:

\dot W_{out} = \dot m \cdot (h_{in}-h_{out})-\dot Q_{out}

The properties of the water are obtained from property tables:

Inlet (Superheated Steam)

P = 10\,MPa

T = 520\,^{\textdegree}C

h = 3425.9\,\frac{kJ}{kg}

Outlet (Superheated Steam)

P = 1\,MPa

T = 280\,^{\textdegree}C

h = 3008.2\,\frac{kJ}{kg}

The work output is:

\dot W_{out} = \left(1.1\,\frac{kg}{s}\right)\cdot \left(3425.9\,\frac{kJ}{kg} -3008.2\,\frac{kJ}{kg}\right) - 60\,kW

\dot W_{out} = 399.47\,kW

5 0
3 years ago
Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
kirill115 [55]

Answer:

Explanation:

Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

h_1=3658.8KL/Kg\\s_1=7.1693kJ/kg.k

Obtain the following properties at 10kPa from the table "saturated water"

h_{f2}=191.81KJ/Kg.K\\h_{fg2}=2392.1KJ/Kg\\s_{f2}=0.6492KJ/Kg.K\\s_{fg2}=7.4996KJ/Kg.K

Calculate the enthalpy at exit of the turbine using the energy balance equation.

\frac{dE}{dt}=Q-W+m(h_1-h_2)

Since, the process is isentropic process Q=0

0=0-W+m(h_1-h_2)\\h_2=h_1-\frac{W}{m}\\\\h_2=3658.8-\frac{2626}{2}\\\\=2345.8kJ/kg

Use the isentropic relations:

s_1=s_{2s}\\s_1=s_{f2}+x_{2s}s_{fg2}\\7.1693=6492+x_{2s}(7.4996)\\x_{2s}=87

Calculate the enthalpy at isentropic state 2s.

h_{2s}=h_{f2}+x_{2s}.h_{fg2}\\=191.81+0.87(2392.1)\\=2272.937kJ/kg

a.)

Calculate the isentropic turbine efficiency.

\eta_{turbine}=\frac{h_1-h_2}{h_1-h_{2s}}\\\\=\frac{3658.8-2345.8}{3658.8-2272.937}=0.947=94.7%

b.)

Find the quality of the water at state 2

since h_f at 10KPa <h_2<h_g at 10KPa

Therefore, state 2 is in two-phase region.

h_2=h_{f2}+x_2(h_{fg2})\\2345.8=191.81+x_2(2392.1)\\x_2=0.9

Calculate the entropy at state 2.

s_2=s_{f2}+x_2.s_{fg2}\\=0.6492+0.9(7.4996)\\=7.398kJ/Kg.K

Calculate the rate of entropy production.

S=\frac{Q}{T}+m(s_2-s_1)

since, Q = 0

S=m(s_2-s_1)\\=2\frac{kg}{s}(7.398-7.1693)kJ/kg\\=0.4574kW/k

6 0
3 years ago
Other questions:
  • According to the video, what are some of the effects of the increase in the use of automated tools for Loading Machine Operators
    10·2 answers
  • An object is supported by a crane through a steel cable of 0.02m diameter. If the natural swinging of the equivalent pendulum is
    6·1 answer
  • The Acme tool is aligned to the work with: A. A square B. The eye C. An Acme tool gage D. A center gage
    14·1 answer
  • You rent an apartment that costs $1800 per month during the first year, but the rent is set to go up 11,5% per year. What would
    12·1 answer
  • Which of the following was a sustainable power source used during the Middle Ages?
    9·2 answers
  • What parts do all circuits have in common?
    9·2 answers
  • PLEASE FIX THIS LUA SCRIPT
    12·2 answers
  • Technician A says that fuel filler caps with pressure and vacuum vents are used with EVAP system fuel tanks. Technician B says t
    5·1 answer
  • What is the placement of a lock out device on an energy isolating device?.
    12·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!