1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
2 years ago
11

A factory hires a consultant to recommend ways to improve its productivity. The consultant notices that the production floor is

strewn with tools and machines that are not continually in use. Which of the 5S philosophies should the consultant recommend to the management to establish better productivity?
A.
set in place
B.
sort
C.
standardize
D.
shine
E.
sustain
Engineering
1 answer:
Romashka [77]2 years ago
8 0

Answer:

B

Explanation:

Keep only what is used. Remove all unnecessary items. Red tag these items for review.

You might be interested in
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
I have a question.What does DIY mean?
alexdok [17]

Answer: It means "Do it yourself".

Explanation: You're welcome!

6 0
2 years ago
Read 2 more answers
Create a series of eight successive displacements that would program a robot to move in an octagonal path that is as close as yo
Komok [63]

Answer:

bts biot bts biot jungkukkk

jungkukkkbiot

Explanation:

bts biot bts biot jungkukkk

jungkukkkbiot

5 0
3 years ago
A basketball has a 300-mm outer diameter and a 3-mm wall thickness. Determine the normal stress in the wall when the basketball
faltersainse [42]

Answer:

2.65 MPa

Explanation:

To find the normal stress (σ) in the wall of the basketball we need to use the following equation:

\sigma = \frac{p*r}{2t}

<u>Where:</u>

p: is the gage pressure = 108 kPa

r: is the inner radius of the ball

t: is the thickness = 3 mm  

Hence, we need to find r, as follows:

r_{inner} = r_{outer} - t    

r_{inner} = \frac{d}{2} - t

<u>Where:</u>

d: is the outer diameter = 300 mm

r_{inner} = \frac{300 mm}{2} - 3 mm = 147 mm

Now, we can find the normal stress (σ) in the wall of the basketball:

\sigma = \frac{p*r}{2t} = \frac{108 kPa*147 mm}{2*3 mm} = 2646 kPa = 2.65 MPa

Therefore, the normal stress is 2.65 MPa.

I hope it helps you!

3 0
3 years ago
Luợng hơi nước có lưu lượng 100kg/s ở áp suất đầu p;= 20bar, nhiệt độ đầu t; =400°C giãn nở đoạn nhiệt trong tuabin đến độ khô X
Valentin [98]

Answer:

Explanation:

.

3 0
3 years ago
Other questions:
  • What is the damped natural frequency (in rad/s) of a second order system whose undamped natural frequency is 25 rad/s and has a
    15·1 answer
  • Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature
    13·1 answer
  • Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a volumetric flow rate of 0.36 m3/s and exits at 0.
    15·1 answer
  • An insulated piston–cylinder device initially contains 1 m3 of air at 120 kPa and 17°C. Air is now heated for 15 min by a 200-W
    7·1 answer
  • Describe ICP/OES in detail.
    6·2 answers
  • ممكن الحل ............
    10·1 answer
  • As a top-level executive at your own company, you are worried that your employees may steal confidential data too easily by down
    12·1 answer
  • A package is thrown down an incline at A with a velocity of 1 m/s. The package slides along the surface ABC to a conveyor belt w
    13·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • 48/64 reduced to its lowest term
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!