To find the atomic mass of chlorine, the atomic mass of each isotope is multiplied by the relative abundance (the percent abundance in decimal form) and then the individual masses are added together. The atomic mass of chlorine is 35.45 amu.
A rock with different rocks combined to make it
Like quartzite is made up of quartz but granite is made of quartz , feildspar and mica
Hope this helps
Answer:
<span>Carbon readily forms covalent bonds with other carbon atoms.
Explanation:
As we know approximately more than 95 % compounds, either isolated, discovered or synthesized belongs to organic compounds containing carbon atoms.
This great diversity of organic compounds is due to following facts.
1) Catenation:
Carbon has a peculiar behavior of self linkage. This self linkage of one carbon with another is called as catenation. In this way carbon can form a long chain of carbon atom. A branching can also take place when one carbon is bonded further to three of four carbon atoms.
2) Isomerism:
Secondly the carbon containing compounds show isomerism. In which molecular formula is same but structural formula is different. For example molecular formula C</span>₅H₁₂ can make following compounds,
a) n-Pentane
b) 2-Methylbutane
c) 2,2-Dimethylpropane
3) Multiple Bonds:
Carbon can form multiple bonds i.e double bond like in alkenes and triple bonds like in alkyne.
Due to these factors carbon gets very high number of opportunities to form large number of compounds.
Answer:
The scaling factor is 5.
Explanation:
Hello there!
In this case, since the scaling factor is defined as the ratio of the molar mass of the molecular formula (complete) to the empirical formula (simplified), it is possible to compute it for the empirical formula of CH2O whose molar mass is 30 g/mol (12+2+16) as shown below:

Therefore, we can also infer that the molecular formula would be:

Best regards!
Of course, at STP, dioxygen is a gas, but 10.0 g is still 10.0 g. We could calculate its volume at STP, which is 22.4 L × its molar quantity, approx. 8⋅L . There are 1.51×1023molecules O2 in 10.0 g O2 .