<span>Water in the oceans may become fresh water available to humans through the processes of evaporation, condensation and precipitation.
In these processes, water is heated to a very high temperature until it evaporates in order to kill the germs and remove the salts which remains after water evaporation. The next step in condensing the water vapor (which is now fresh) and precipitating this vapor to be used by humans.</span>
Answer:
3.0 seconds
Explanation:
The time of flight of a projectile (the time it takes to reach the ground) does not depend on the horizontal motion, but only on its vertical motion.
In fact, the time of flight is determined by the suvat equation:

where
s is the vertical displacement
u is the initial vertical velocity (0, in case of these two projectiles)
g = 9.8 m/s^2 is the acceleration of gravity (assuming downward as positive direction)
t is the time of flight
Re-arranging the equation, we get

We see that this time depends only on s (the heigth of the cliff) and g: therefore, since the two projectiles are launched from the same height, they take the same time to reach the ground, 3.0 seconds.
A beta particle is identical to : an electron
Both of beta particle and electron are high in energy and move in high speed.
hope this helps
Answer: 0 m
Explanation:
Let's begin by stating clear that movement is the change of position of a body at a certain time. So, during this movement, the body will have a trajectory and a displacement, being both different:
The trajectory is the <u>path followed by the body</u> (is a scalar quantity).
The displacement is <u>the distance in a straight line between the initial and final position</u> (is a vector quantity).
According to this, in the description Matthew's home is placed at 0 on a number line, then he moves 10 m to the park (this is the distance between the park and Mattew's home), then 15 m to the movie theatre until he finally comes back to his home (position 0). So, in this case we are talking about the <u>path followed by Matthew</u>, hence <u>his trajectory</u>.
However, if we talk about Matthew's displacement, we have to draw a straight line between Matthew's initial position (point 0) to his final position (also point 0).
Now, being this an unidimensional problem, the displacement vector for Matthew is 0 meters.