Answer:
120 m/s
Explanation:
Given:
v₀ = 0 m/s
a = 12 m/s²
t = 10 s
Find: v
v = at + v₀
v = (12 m/s²) (10 s) + 0 m/s
v = 120 m/s
Answer:
a) 107.1875 Hz
b) 214.375 Hz
c) 321.5625 Hz
Explanation:
L = length of the open organ pipe = 1.6 m
v = speed of sound = 343 m/s
f = fundamental frequency
fundamental frequency is given as

inserting the values


Hz
b)
first overtone is given as
f' = 2f
f' = 2 (107.1875)
f' = 214.375 Hz
c)
first overtone is given as
f'' = 3f
f'' = 3 (107.1875)
f'' = 321.5625 Hz
Answer:
3.33 N
Explanation:
First, find the acceleration.
Given:
Δx = 3 m
v₀ = 0 m/s
t = 3 s
Find: a
Δx = v₀ t + ½ at²
3 m = (0 m/s) (3 s) + ½ a (3 s)²
a = ⅔ m/s²
Use Newton's second law to find the force.
F = ma
F = (5 kg) (⅔ m/s²)
F ≈ 3.33 N
Work = (force) x (distance)
The worker does (40N) x (4m) = 160 joules of work.
Friction eats up (27N) x (4m) = 108 joules of that energy,
generating 108 joules of heat.
The remaining (160J - 108J) = 52 joules of energy moves the box.