The representation of this problem is shown in Figure 1. So our goal is to find the vector

. From the figure we know that:

From geometry, we know that:

Then using
vector decomposition into components:

Therefore:

So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector

, that is:
</span>

Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
Answer:
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/h to the north).
Explanation:
Answer:
the bending moment will be W from either sides
Explanation:
bending moment= force (load) * perpendicular distance, if I understand the question the distance will be 1/2 of the length
=> f x 1/2(l) =W*1/2(2) =W
Answer:
friction, conduction and induction
Explanation:
Had it in class I had it correct hope this helps.