Speed most often describes acceleration or a high rate of motion. ... As a verb, it means to “move along quickly,” like how you speed around on your bike. Direction is defined as the path that something takes, the path that must be taken to reach a specific place, the way in which something is starting to develop or the way you are facing
Answer:
Wind turbines are a source of clean renewable energy, but some people who live nearby describe the shadow flicker, the audible sounds and the subaudible sound pressure levels as "annoying." They claim this nuisance negatively impacts their quality of life
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]
Answer:
B. A magnet being moved into or out of the coil
Explanation:
Faraday law of electromagnetic induction states that when there is change in flux , an emf is produced . Among the given instances , only in case of B , flux is changing . So current will be induced in the coil . We shall see how it takes place .
A wire carrying constant current will produce magnetic flux in nearby coil but there is no change in flux because current as well as position of wire with respect to coil are not changing .
Passing of magnetic field through a stationary coil produces flux in the coil but here too there is no change in flux so no current will be induced .
A magnet positioned near a coil creates magnetic flux in the coil but the magnitude of flux remains constant so no change in flux and no creation of induced current .