Answer:
the answer is distillation
Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3
A. the distance between towns
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g