Energy must be absorbed to for the electron to transfer from
ground state to a much higher energy level. In the same manner, Energy is
emitted when the electron is transferred from a higher energy level to a lower
energy level. Thus,
n=3 to n=5 à
absorb
n=1 to n=3 à
absorb
n=3 to n=2 à
emit
n=2 to n=1 à
emit
Answer:
Ionic bond, also called electrovalent bond, type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound. ... The atom that loses the electrons becomes a positively charged ion (cation), while the one that gains them becomes a negatively charged ion (anion).
Explanation:Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion. Ionic bonds require an electron donor, often a metal, and an electron acceptor, a nonmetal.
Ionic bonding is observed because metals have few electrons in their outer-most orbitals. By losing those electrons, these metals can achieve noble gas configuration and satisfy the octet rule. Similarly, nonmetals that have close to 8 electrons in their valence shells tend to readily accept electrons to achieve noble gas configuration. In ionic bonding, more than 1 electron can be donated or received to satisfy the octet rule. The charges on the anion and cation correspond to the number of electrons donated or received. In ionic bonds, the net charge of the compound must be zero.
This sodium molecule donates the lone electron in its valence orbital in order to achieve octet configuration. This creates a positively charged cation due to the loss of electron.
This chlorine atom receives one electron to achieve its octet configuration, which creates a negatively charged anion.
The predicted overall energy of the ionic bonding process, which includes the ionization energy of the metal and electron affinity of the nonmetal, is usually positive, indicating that the reaction is endothermic and unfavorable. However, this reaction is highly favorable because of the electrostatic attraction between the particles. At the ideal interatomic distance, attraction between these particles releases enough energy to facilitate the reaction. Most ionic compounds tend to dissociate in polar solvents because they are often polar. This phenomenon is due to the opposite charges on each ion.
Answer:
i do not know i think the answer is 23
Explanation:
The mole ratio of the compound and its constituent elements are as follows:
- The mole ratio between the compound and O is 5 : 22
- The mole ratio between the compound and Si is 2 : 4
- The mole ratio between the compound and Ca is 5 : 20
- The mole ratio between the compound and C is 1 : 1
<h3>What is mole ratio?</h3>
Mole ratio is the ratio of the moles of one or more elements or compounds to another.
The given compound is Ca₄Si₂O₆(CO₃)(OH)₂
Moles of oxygen present in 1 mole of compound = 11 moles
Moles of Si present in 1 mole of compound = 2 moles
Moles of Ca present in 1 mole of compound = 4 moles
Moles of C present in 1 mole of compound = 1 mole
- Given 5 moles of the compound below, the mole ratio between the compound and O is 5 : 22
- Given 2 moles of the compound below, the mole ratio between the compound and Si is 2 : 4
- Given 5 moles of the compound below, the mole ratio between the compound and Ca is 5 : 20
- Given 3.5 moles of the compound below, the mole ratio between the compound and C is 1 : 1
Given the equation of the reaction below;
- Pb(NO₃)₂ (aq) + 2 KI (aq) --> PbI₂ (s) + 2 KNO₃ (aq)
the mole ratio of the reactants and products are as follows:
- Pb(NO₃)₂ : 2 KI (aq) = 1 : 2
- Pb(NO₃)₂ : PbI₂ (s0 = 1 : 1
- Pb(NO₃)₂ : 2 KNO₃ (aq) = 1 : 2
In conclusion, the mole ratio of reaction is the ratio in which moles of the substances combine.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1