1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
10

One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other wor

ds, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 3.8 and 8.4 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially.
Physics
1 answer:
zhannawk [14.2K]3 years ago
4 0

Answer:

Part a)

v = 16.52 m/s

Part b)

v = 7.47 m/s

Explanation:

Part a)

(a) when the large-mass object is the one moving initially

So here we can use momentum conservation as the net force on the system of two masses will be zero

so here we can say

m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v

since this is a perfect inelastic collision so after collision both balls will move together with same speed

so here we can say

v = \frac{(m_1v_{1i} + m_2v_{2i})}{(m_1 + m_2)}

v = \frac{(8.4\times 24 + 3.8\times 0)}{3.8 + 8.4}

v = 16.52 m/s

Part b)

(b) when the small-mass object is the one moving initially

here also we can use momentum conservation as the net force on the system of two masses will be zero

so here we can say

m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v

Again this is a perfect inelastic collision so after collision both balls will move together with same speed

so here we can say

v = \frac{(m_1v_{1i} + m_2v_{2i})}{(m_1 + m_2)}

v = \frac{(8.4\times 0 + 3.8\times 24)}{3.8 + 8.4}

v = 7.47 m/s

You might be interested in
Calculate the magnitude of the electric force between two charged balloons if one of the balloons has a charge of 15 * 10 ^ - 8
Sati [7]

Answer:

ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN

Explanation:

3 0
3 years ago
A technician services the carburetor, and then, performs a complete governor system adjustment. The governor system on the engin
madreJ [45]

Answer: Either of the two

Explanation:

Either of the two - the governed idle spring or the normal primary governor spring can be adjusted first.

The main function of the carburetor is to mix air with fuel.

5 0
3 years ago
What ocean depth would the volume of an aluminium sphere be reduced by 0.10%
yKpoI14uk [10]

Answer:

6400 m

Explanation:

You need to use the bulk modulus, K:

K = ρ dP/dρ

where ρ is density and P is pressure

Since ρ is changing by very little, we can say:

K ≈ ρ ΔP/Δρ

Therefore, solving for ΔP:

ΔP = K Δρ / ρ

We can calculate K from Young's modulus (E) and Poisson's ratio (ν):

K = E / (3 (1 - 2ν))

Substituting:

ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)

Before compression:

ρ = m / V

After compression:

ρ+Δρ = m / (V - 0.001 V)

ρ+Δρ = m / (0.999 V)

ρ+Δρ = ρ / 0.999

1 + (Δρ/ρ) = 1 / 0.999

Δρ/ρ = (1 / 0.999) - 1

Δρ/ρ = 0.001 / 0.999

Given:

E = 69 GPa = 69×10⁹ Pa

ν = 0.32

ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)

ΔP = 64.0×10⁶ Pa

If we assume seawater density is constant at 1027 kg/m³, then:

ρgh = P

(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa

h = 6350 m

Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.

6 0
3 years ago
How many variables should there be in a well-designed experiment?
s344n2d4d5 [400]

Answer:

1

Explanation:

8 0
3 years ago
What are the factors that effect the strength of a frictional force???
seropon [69]

If you write down the formula for friction, you will get an answer.

Ff = u * N               Where N is a push down force that an object experiences.

                              u (mu) is a constant and has no units

It may not be accelerating and still experience friction. A is not correct.

Color and Density will not affect the frictional force. B is not so.

Buoyant forces are a different thing altogether. Generally friction has nothing to do with them. C is incorrect.

The last one is your answer. Technically mg should be the answer and not mass, but the second part is correct.

5 0
3 years ago
Other questions:
  • SpongeBob noticed that his favorite pants were not as clean as they used to be. His friend Sandy told him that he should try usi
    15·1 answer
  • Traditional Indonesian music uses an ensemble called a gamelan that is based on tuned percussion instruments somewhat like gongs
    15·1 answer
  • A 74.9 kg person sits at rest on an icy pond holding a 2.44 kg physics book. he throws the physics book west at 8.25 m/s. what i
    13·1 answer
  • How much of the electromagnetic spectrum is visible to us? A. All of it B. None of it C. Most of it D. A small part of it
    14·2 answers
  • What are the units of measurement in the international system of units?
    10·1 answer
  • Surface winds on Earth are primarily caused by differences in
    12·2 answers
  • How does scale influence the physical and chemical properties of a substance
    8·1 answer
  • An electron is moving northward in a magnetic field. The magnetic force on the electron is toward the northeast. What is the dir
    12·1 answer
  • Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 102 kg and a radius of 1.53 m. The
    13·1 answer
  • A student stands with both feet on some scales in order to measure his weight.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!